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Abstract. A study is made of the Langevin equation i = - v ' ~ x ) + g ( x ) f ( t l + ~ ( r l ,  where 
the noises ~ ( 1 )  and ( ( 1 )  are Gaussian with zero mean and with ( ~ ( l ] ~ ( r ' ) ) = 2 R S ( l - f ' ) ,  
( f ( l l f ( 1 ' ) )  = ( D I T )  exp - - ( I  - I ' ~ / T  Path integral representations for conditional probability 
distributions are given for the two cases r = O  and 7 f 0 .  For R and D small, but of the 
same order, the appropriate path integrals are evaluted to leading order using the method 
of steepest descents, in order to find the stationary probability distribution P8,[x)  and the 
mean relaxation time f for escape from a potential well. Analytical expressions are given 
for 7 when r = O  and when J is small. For general T we present numerical results for the 
stationary probability distribution, using the particular forms V ( x ]  = - fnx'+~Ax'-  R In x 
and g(x)=x, which are appropriate to the dye laser. 

1. Introduction 

The effect that non-white (i.e. coloured) external noise can have on physical systems 
has been of considerable interest in recent years. The motivation has been both physical 
and mathematical; in the latter case the challenge presented by the non-Markovian 
nature of the problem being the main driving force [l]. However, the difficulties 
inherent in generalizing the familiar tools of the theory of stochastic processes to this 
situation has meant that the majority of authors have restricted their attention to the 
simplest model: a Langevin equation with additive coloured noise. On the other hand, 
the use of path-integral techniques for calculating probability distributions in the weak 
noise limit [2] can be used irrespective of whether the noise is coloured or not, and 
seems to be the most efficient way of performing calculations on more complex model 
systems [3,4]. 

In this paper we use the path integral approach to study the model defined by the 
Langevin equation 

x = - v ' ( x ) + g ( x ) t ( t ) + T ( r ) .  ( 1 )  

Here ( ( 1 )  and T ( t )  are two different types of noise; the former is coloured while the 
latter is white. We will assume that they are both Gaussian with zero mean. There are 
several reasons why models of the type (1) are of interest. Firstly, coloured noise is 
frequently multiplicative, rather than additive, and it seems desirable to investigate 
the effects of having a non-trivial function g(x) multiplying ( ( t ) .  Secondly, internal 
noise will typically also be present and so it seems natural to include a white noise 
~ ( 1 )  in addition to the coloured noise 5 ( r ) .  In fact, as we will see later, the process 
with the white noise absent is a singular one in the path integral formulation. Thirdly, 
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there are definite physical problems which can be modelled by ( l ) ,  that is, situations 
which require both multiplicative coloured noise and additive white noise. We mention 
here noise in dye lasers [ 5 ] ,  where x(t) represents the magnitude of the complex laser 
field [6,7], and the problem of escape over a fluctuating barrier that occurs in highly 
constrained systems such as a glass [8]. 

Since both (( 1 )  and q( 1 )  are Gaussian with zero mean, they are completely specified 
by their second moments. These will be defined by 
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and 

( q ( t ) q ( / ’ ) )  = 2RS( 1 - 1 ’ ) .  (3) 
We have taken the noise to be exponentially correlated, since this represents the 
simplest departure from the white noise. However, it is not difficult to extend the 
treatment to more general types of correlator [3]. The quantities we wish to calculate, 
such as the rate of escape of a particle over a potential barrier or various probability 
distributions, are found by evaluating particular path integral representations in the 
limit of small diffusion constants by the method of steepest descents. We will only be 
interested in the leading exponential contributions to these quantities in this paper. 
The precise form this calculation takes depends on the relative sizes of the two diffusion 
constants D and R ;  we will frequently assume that they are of the same order for 
illustrative purposes. Finally, although we wish to keep our discussion as general as 
possible, we will eventually have to assume some specific form for V ( x )  and g(x) 
when carrying out numerical computations. In this case we will take the forms appropri- 
ate in the study of the dye laser, that is V ( x )  = - f a x Z + a A x 4 -  R In x and g(x) = x. 

The outline of the paper is as follows. In section 2 we obtain a path integral 
representation for the conditional probability density function P(x ,  5, fix,, to, io) for 
T # 0 as well as a simpler representation for T = 0. In section 3 we calculate the mean 
escape time and the stationary probability distribution for T = 0 and in section 4 we 
develop a power series expansion in 7 about the T = 0 result for the mean escape time. 
The model for general T is dealt with in section 5 where we present numerical results 
for the dye laser. 

2. Path integral formulation 

In this section we develop a path integral description in terms of the stochastic process 
defined by (1)-(3) by first introducing an equivalent two-dimensional Markov process 
and then writing down the corresponding Fokker-Planck equation. The two- 
dimensional process is given by 

X = - v’(X)+g(X)g+ 7 ] , ( 1 )  i =  - T - ’ g + T - ’ q 2 ( l )  (4) 

where x ( i )  and ( ( 1 )  are initially uncorrelated and where the q, ( l )  are Gaussian with 
zero mean and with 

(v i (  t ) q j ( t ’ ) )  = 2D,6$( 1 - 1 ’ )  i, j =  1,2. ( 5 )  

In the notation of section 1, R = D ,  and D = D,. To see that the above process is 
equivalent to the one defined in section 1, we first solve the second equation in (4) 
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with the initial condition on ( ( 1 )  set in the infinitely distant past. We find that ( [ ( t ) )  = 0 
and ( ( ( f ) [ ( t ' ) )  has the form (2). Furthermore, since q 2 ( f )  is Gaussian, so is [ ( t ) .  Hence 
the two processes are equivalent. If, instead, x ( t )  and ( ( 1 )  are specified at some initial 
time to then the result holds provided these two quantities were uncorrelated initially, 
since their previous history will then be irrelevant [9]. 

Since the process (4) is Markovian we may describe it using a Fokker-Planck 
equation. To simplify notation, we introduce the two-component vector z = ( z , ,  2,) = 
(x, [), and write (4) as 

~ I = A I ( z ) + v I ( ~ )  i2= A,(z)+r-'q2(t) ( 6 )  

A , ( ~ ) = - V ' ( z , ) + z , g ( z , )  A,(z) = -T-'z,.  (7)  

where the A,(z) are given by 

The equation satisfied by the conditional probability density function P(z, f IzO, to)  is 
then [lo] 

where B is the (constant) two by two matrix 

0 
2D2r-') (9) 

It is now straightforward to write the solution of (8) in terms of a path integral. Since 
B is a constant, that is, the noise is not multiplicative, ambiguities associated with 
time-discretization are at a minimum, and one finds [ 111 

Z ( l l = :  

z ( I d = Z "  
P(z,tlzo, t o ) = [  az exp(-S[zllD)J[zI (10) 

where 

and 

T 

A few comments are in order. Firstly, D has been introduced simply to indicate the 
relative importance of the various terms in the small noise limit: if D,  - D, (-D) are 
small, then the dominant part of the integrand is that involving the 'action' S[z]. 
Secondly, J[z] is, up to normalization, the Jacobian factor which comes from the 
functional change of variable from { q , ( t ) ,  q 2 ( t ) }  to {z(f)]. A definite choice of time 
discretization has been made, which in our case means that the coefficient multiplying 
the integral in the exponential (12) is f. Thirdly, this time discretization into N intervals 
of duration E is evident in the definition of the measure (13). Here the subscript i 
labels the intervals and the limit consists of taking e+O, N + m  but with NE = ( f  - to) 
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fixed. Finally, notice that if the white noise had been absent in ( l ) ,  then the Fokker- 
Planck equation (8) would have contained a matrix B given by (9) but with D, = 0. 
This matrix would not have been invertible and the construction leading to (11)-(13) 
would not have been immediately applicable. It is in this sense that the process ( 1 )  
without white noise is singular; a different procedure for obtaining a path integral 
representation for the solution of the Fokker-Planck equation has then to be adopted 

In later sections we will discuss the calculation of (10) in the small noise limit by 
the method of steepest descents, for general T. However, as an introduction we begin 
by studying the white noise limit. The action S[z] has a finite limit as 7'0 which; 
moreover, is Gaussian in z2 .  Hence the variable z2 can be integrated out, leaving the 
reduced action 
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~91. 

If we wish to determine the form of the integral beyond the leading order term (14), 
we have to include the g'(zl)z2 factor that occurs in I [ z ]  in the integration and also 
cope with the non-trivial 7 - 0  limit in (12) and (13). Rather than following this route, 
it is easier to go back to ( l ) ,  where now both c(t) and v ( t )  are white, and to write 
down a Fokker-Planck equation which is equivalent to this Langevin equation. One 
finds that P(x, t lxo ,  io) satisfies the equation [lo] 

where 

A(x) = - V'( X) 

and 

= 40, + &g2(X). 

This process is thus equivalent to one described by the equation 

i =A(x)+$(x)C(t)  (18) 

where ( ( 1 )  is a Gaussian white noise with zero mean and unit diffusion constant. The 
structure of $(x) is exactly what we would expect to get when we add two independent 
Gaussian processes together. We have used the Stratonovich prescription in defining 
( 1 )  or equivalently (18). Since the noise is multiplicative and white, it is crucial to give 
an appropriate interpretation rule in addition to the Langevin equation [12]. We 
naturally use the Stratonovich prescription since we are interested here in the T+O 
limit of a non-white process. 

The solution to the Fokker-Planck equation (15) may be written as [ l l ]  
x l , ) = l  

x ~ I O l = l ~  
P(x, [lxo, l o ) =  / 9.x exp(-S[xl/D)J[xl (19) 
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where "1' (x+ V'(x))' 
S[x]=- d t  

4 IO +2(x) 

and 

Similar comments to those made following (13) are also applicable here. The leading 
order result (20) agrees with (14), but (21) and (22) show the greater complexity of 
the Jacobian and measure terms when the noise is multiplicative. 

3. Calculation in the white noise limit 

The path integral representation for the conditional probability for r = 0 derived in 
the previous section is used in this section to calculate the escape time and stationary 
probability distribution. First, suppose V(x) is a double-well potential. We can ask 
what is the mean time taken for a noise-induced transition from one well to the other 
to occur. We expect this to be exponentially large in the diffusion constants, if they 
are small and of the same order. Of course, since the process is one-dimensional and 
Markovian, we could easily calculate this quantity directly from the Fokker-Planck 
equation using standard methods [lo]. However, our intention is to perform the 
calculation using a path-integral approach which can be applied, without any great 
modification, to the T # 0 case, so we wish to deduce this mean transition time from 
(19). Suppose, then, that D,  = u , D  and 4 = u2D where U, and u2 are of order unity. 
Then the path integral (19) may be evaluated by the method of steepest descent to give 

P ( x ,  fix,, to) -exp(-S[x,l/D) (23) 

where xc( 1) is the extremal path connecting the two wells. In this paper we will only 
concern ourselves with evaluating quantities to leading order; the next order calculation 
which gives the prefactor in (23) is considerably more difficult. The extraction of the 
mean transition time from (23) has been discussed elsewhere [4]; however, the basic 
points are relatively simple and can be quickly summarized. A more complete calcula- 
tion of P(x, flxo, tu) would yield a power series in T@ exp(-S[x,]/D), where T =  f - 1, 
and @ is a prefactor independent of T and D [13]. The quantity displayed on the 
right hand side (RHS) of (23) is merely the first term in this series and comes from a 
simple extremal path between the two wells. The other terms in the power series come 
from multiple paths between the wells. The important point is that P ( x ,  flxo, f,,) is 
simply a function of T / F  where F =  W' exp(S[x,]/D). Since is the required mean 
time (up to constants of order unity which do  not concern us here) we can obtain it 
to leading order simply by taking the inverse of the RHS of (23). 

We are therefore left with performing the variation 
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Since the white noise limit of ( I )  is equivalent to the single white noise process ( IS ) ,  
this problem has already been studied in [4]. There, the external paths were shown to 
be x = i V’(x), the positive sign being the appropriate one for ‘uphill’ paths from the 
bottom of a well to the top of the barrier and the negative sign the for the ‘downhill’ 
paths from the top of the barrier to the bottom of a well. The latter path gives zero 
contribution to the action S[xJ as we would expect and so 
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where x, is the x-coordinate of the bottom of the starting well and x, is the x-coordinate 
of the top of the barrier. Therefore 

=exp(jx: dX(D,+D,g2(x))  v’(x) 1. 
Another quantity we may calculate by applying the method of steepest descents to 

(19) is the stationary probability distribution 

P,,(x) = lim P(x, f/xo, to)  (27) 

where xo is again a local minimum of the potential. The result is of the form (23). The 
extrema1 path once more satisfies x = i V’(x); all that changes is the boundary condi- 
tions. These are x(-W) = x,, and x(0) = x, where we have taken the final time to be 
f = O ,  without loss of generality. From (23), (25) and (27) we see that 

IU--m 

PAX) - exp(-S(x)/D) 

Once again, while (28) is easily obtained as a time-independent solution of the 
Fokker-Planck equation ( lS ) ,  the method adopted here only shows its true potential 
in the case T #  0 as we will show in the following sections. 

Finally, let us illustrate these ideas on the dye laser problem where V(x)= 
-fax2+$Ax4- R In x and g(x) = x. To leading order the -R In x term is omitted. Also 
since x( I )  = IE( t ) l ,  where E(  t )  is the complex laser field, x 0, and so for a > 0, V(x) 
has only one potential well. This means that only the result for the stationary probability 
distribution is relevant in this case and we have simply to evaluate the integral 

(-ax+Ax’) 

where xo= This leads to 

p,,(x)-exp --+- h ( x 2 +  RD-’) ( ,̂D 

where A = a+A(RD-’),  in agreement with [61. 
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4. The small r expansion 

In this section we develop a power series expansion in T about the T = 0 limit in order 
to extend the white noise result for the mean escape time (26) to small T. 

The starting point for T # 0 is the expression for the conditional probability distribu- 
tion P(z ,  tlz0, to) given in (10) in terms of the  action S[z] given by ( 1 1 ) .  In what follows 
we will return to using the variables ( x ,  6 )  rather than (z,, z2); it will also be convenient 

dependence we can change from the independent variable I to x so that &(I) = y ( x ) ( ' ( x )  
and 

i.troduc. !he v&&y y ( ~ x ) = f ( ! ) .  Since the .ale" S[Zj co"!.ifis "0 .$& time 

where primes represent diiierentiation with respect to x and x o = x ( i , ) .  As in ihe 
previous section we will assume that uI and u2 are both of order unity. Also, we will 
take x,, to be the x-coordinate of some local minimum of the potential V ( x )  since this 
is relevant to the calculation of both escape times and stationary probability distribu- 
tions, hence V ( x , )  = 0. 

As in the white noise case the calculation of quantities in the small D limit depends 
U11 L,,,",,'g U,= C*LLCIII'lI IJ'lL" UFiLWGri l l  LW" p " V L " ,  111 L I I G  CdSS U1 L11C CbL'lIJG L l l l l C  LLIG>C 

two points are the bottom and top of a barrier while for the stationary probability 
distribution at x they are a local minimum of the potential and the point x itself. The 
extrema1 path x, is the one that minimizes the action ( 3 1 ) .  Since the action depends 
on both y ( x )  and F(x)  the minimal action is found by varying with respect to these 
two variables. Setting the variations equal to zero results in the following two coupled 

-- C__I I__ .L .  1 --*L L ....- --: -.-. :-AL. --.. . P . L .  ..~ ^-^. :-^ .L^^^ 

A;Rnmnt;a l  P".....;nnC. 
Y . I 1 1 1 1 . . L , Y I  "yYYL."'.". 

and 

m. 

5 - T'(Y2C+yY'C) = g(Y + v' - g c ) .  ( 3 3 )  
0, 

In principle it is possible to eliminate y from the above equations to obtain a single 
second-order equation in 6. This tells us that to obtain a solution to the equations 
requires two independent boundary conditions reflecting the fact that we are dealing 
with a two-dimensional Markov process (4). 

The white noise limit is taken by setting T equal to zero in ( 3 2 )  and ( 3 3 )  and solving 
the resulting pair of simultaneous equations in y and 5. This is easily done and one 
finds two sets of solutions: 

y = - V ( x )  C = O  ( 3 4 )  

and 

The latter solution is the one corresponding to the 'uphill' path and gives the action 
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for the extremal path as 
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which leads to the previously derived results (26) and (28) for the mean escape time 
to a neighbouring well and the stationary probability distribution. 

To go beyond white noise to small T it is natural to attempt an expansion about 
the white noise limit in powers of T~ since this coefficient enters into (32) and (33). 
We let 

and 

The coefficients of the expansions are found by substituting these expressions into (32) 
and (33) and equating powers of T ~ "  for n =0, 1, 2,. . . . (Obviously, for uphill paths, 
yo and to are given by (351.) 

To leading order, the mean time of escape from one well to a neighbouring well is 

F -  exp(S[y(x,), 5(xC)1/D) (39) 
where x, is the extremal path from the bottom of the starting well (with x-coordinate 
xo) to the top of the barrier (with x-coordinate xl). The extremal path x , ( f )  which 
dominates the path integral for P(z ,  t lzO,  to )  is one for which x(t) and higher derivatives 
vanish in the limit f o +  -a, t+m.  Since corrections to the action arising from the fact 
that f - lo is large, but finite, are exponentially small [2], [ 131, we take the path to be 
defined on the infinite time interval and so y(xo) = x(-m) = 0 and y ( x , )  = x(-m) = 0. 
It is obvious from (32) and (33) that this is equivalent to the boundary conditions 
~ ( X J  = 0 and [(x,) = 0. Due to these boundary conditions, the surface terms in the 
action (31) are zero and the action of the extremal path can be written as 

Substituting (37) and (38) into (40) gives 

where SI,=, is given by (25). It is worth pointing out that calculation of the action to 
O ( T ~ " + ~ )  requires the solution to O ( T ~ " )  of (32) and (33), hence the coefficient of T' 

in (41) depends only on the zeroth order functions yo and to in the expansions (37) 
and (38). We have obtained the action to O ( T ~ )  but we do not write down the expression 
here as it is somewhat unwieldy. Instead, we now go on to study the special case of 
the dye laser for general T. 

5. Results for general 7 

For general T equations (32) and (33) must be solved numerically, for a specific choice 
of functions V(x) and g(x), since the solution for the 'uphill' extremal path cannot 
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be obtained in closed form. We shall use the potential for the dye laser problem which, 
after an appropriate rescaling of x, t and V, can be expressed as 

V(x) = -fX2+qX4. (42) 

The term - R  In x, which makes no contribution to leading order, has been omitted. 
We shall also take g(x) = x, the appropriate multiplicative factor in this case, and 
uI = u2. The stationary probability distribution for the dye laser problem was derived 
in section 3 for T = 0 and is given in (30). Our aim in this section is to find the stationary 
probability distribution P,,(x) numerically for general T. 

The conditional probability distribution P(x, 5, tJxo, CO, to) for the two variable 
process {x, 5) 5 {z] is given in (10). The stationary probability distribution PJx, 5) = 
lim,o+-mP(x, 5, tlx,, go, to) may be found by applying the method of steepest descents 
to (10) giving 

P,,(x, 5)-exp(&, 51/01 (43) 

where S(x, 5) is the action of the extremal path (y<,  &) linking the points (yo,  CO) and 
(y, g) together with the boundary conditions y(xJ = 0, or equivalently 5(xo) = 0 corre- 
sponding to x( -m) = 0, and c(x) = g. 

To find the marginal probability distribution P,,(x) it is necessary to integrate out 
5 from (43). Since we are working in the limit of small D it is natural to evaluate this 
integral by a second application of the method of steepest descents: 

m 

PAX) - d 5  exp(-S(x, 0 1 D ) -  exp(-S(x, 6,") (44) 

where 5, is the value of 5 which minimizes S(x, 6). Hence we have the form 

P(x)  -exp(-S(x)lD) (45) 
with S(x) = S(x, 5,). Since S(x, gm) is at a minimum with respect to 5 we must have that 

To find this partial derivative we consider the variation of the action S [ y ,  51 about the 
extremal path, keeping x, and x fixed but letting the value of 5 at the endpoint x vary. 
In general there are two contributions to this variation, one coming from the variation 
of the action with fixed boundaries, and the other from surface terms which arise when 
integrating by parts. In terms of the Lagrangian L ( y ,  5,g') defined by 

S[Y,  51 = jx dx L ( y ,  f ,  5') (47) 
X" 

the required variation is 

The integral on the RHS of this expression is just the variation of the action at fixed 
boundaries, which is zero by definition of the extremal path. The second term makes 
the only contribution to the full variation and hence 
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The partial derivative on the RHS of (49) is taken using the integrand in (31) as the 
expression for the Lagrangian and the result combined with (46) gives 
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5, + 7Ym5:. = 0 (50) 

where ym is the value of y corresponding to 5 = fm. 

(xo, x) together with the boundary conditions 
In principle we can now evaluate S(x) by first solving (32) and (33) in the range 

5(X") = 0 (51) 

and substituting the solution into (31). 
However the equations (32) and (33) as they stand are in an unsuitable form for 

numerical analysis. To bring them into a more manageable form it is necessary to 
perform a change of variable from y ( x )  to q ( x )  where q ( x )  satisfies 

Y ( ~ ) = - v ' ( ~ ) + g ( ~ ) s ( ~ ) + 7 ( ~ ) .  (53) 

This is similar to the Langevin equation ( 1 )  but here 5(x) and q ( x )  are not noise terms 
bst sr.==th!y varykg Fcnctbx: of x. !E (1) 5 acd 7 are :acd=m va;iab!e; --hi!e in 
(53) they are the particular statistical realizations of these random variables which give 
rise to the extrema1 path. Using (53 )  in (32) and (33) one arrives, after some algebraic 
manipulation, at the following differential equations in 5 and q :  

and 

r25"(TJ - V ' +  gf)2 = 5- r'5'[gTJ5'+ (- V'+gt) ( -  V"+ g'5+ g5')l -5 gq. ( 5 5 )  

In deriving these equations it was necessary to perform one differentiation so one 
oounuary wnuiiion wiii oe requireu in addiiion io (si)  and ( 5 2 ) .  Subsiiiuiiiig the 
particular value #(xo)=O into (53) we see that the required extra boundary condition 
is just 

VI 

~ ~ ~ ~ . I I  , ~ -  ~ ~ ~ - ~ ~ I - - I  I ~ .  

1 ) ( X " )  = 0. (56) 

In terms of 7 and E the condition (52) at the endpoint x is 

5+ r (  - V' + g5+ q)(' = 0. (57) 

We solved (54) and (55 )  numerically in the range (1, x) for several values of x>O, 
using the form (42) for V ( x )  and g(x) = x, and subject to the boundary conditions 
5 = 0, = 0 at x = 1 as well as the condition (57) at the endpoint x. The software 
Iouiinr lrsed i(, 
supplied with an initial estimate for the solution. In practice it was necessary to guess 
values for 5 and 1) at x and then to vary these until (57) was satisfied. A graph of the 
action S(x) for various r, found by substituting the numerically derived solution into 
(31), is shown in figure 1.  

ihr diiiereniiai equaiions W B j  cuLsis i i4 j  Whi& m.uji be 
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x 

Figure 1. The action S(x) plotted for the valuer of r=0.2,  0.5 and 1.5. 

3 -  

0 

0.25 0.50 0.75 1.00 1.25 1.50 1.75 
x 

Figure 2. The value of y at the end point x calculated from (54) and (55)  using the boundary 
condition (59) for r=0.2, 0.5 and 1.5. 

Since both sides of (32) is a difference of squares it can be written in the form 

( 5  - 7Y )( f + 7Y 1 = 5 (Y - V’ + g f  ) (Y  + v’ - g 5 ) .  ( 5 8 )  
VI 

Substituting (52) into this implies that either 

y -  V ’ + g [ = O  

or 

(59) 

y + V ’ - g ( = O  (60) 

at the endpoint x. In all the cases considered it was found that the former of these, 
(59) ,  was equivalent to (52). In the numerical work we used this simpler boundary 
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condition instead of (57) and then checked that the solution obtained corresponded 
to a minimum with respect to 5 of the action S(x, 5). The numerical values of y which 
were found to obey (59) are plotted as a function of x in figure 2. Note that this is 
not a graph of the solution y(x) for one particular endpoint but the value of y 
corresponding to and evaluated at different endpoints x of the interval ( 1 , ~ ) .  

The numerical results for S(x) give curves for the stationary probability distribution 
similar to those derived in [6] and [7] by other methods, though the range of values 
for the parameters D and R used by those authors differ from ours which precludes 
a direct comparison. In [6] the process described by (1) is treated as an approximate 
Markov process by means of an effective Fokker-Planck equation while in [7] a small 
T expansion is made about the white noise limit. Our method tackles the essential 
non-Markovian nature of the coloured noise and makes no restriction on the value of 
T. Furthermore, the method of steepest descents, used in this paper to leading order, 
can be extended in a systematic way [2] in order to obtain the prefactors multiplying 
the exponentials in the expressions for the stationary probability distribution and the 
mean escape time. In the case of additive coloured noise the prefactor for the escape 
rate has been calculated for small T [13]. 

It has been shown 17,151 that the laser system considered in this paper exhibits a 
first-order phase transition at certain values of D and T. The phase transition only 
occurs at finite D and, since our results are derived in the D+O limit, we are unable 
to explore this phenomenon. The model for the dye laser with V ( x )  given by (42) and 
g(x) = x can be derived, via a small intensity expansion, from the laser model considered 
in [ 161. The latter model, unlike the one considered here, exhibits a first order phase 
transition for T = 0 as well as T # 0 and is therefore a more suitable starting point for 
the investigation of the phase transition. 

6. Conclusion 

We have shown how path integral methods, such as those developed in [9] to deal 
with additive coloured noise, can be used to study more complex systems such as the 
one described by (1). The method of steepest descents has been used in this case to 
obtain results in the small D limit where D is the diffusion constant. Advantages of 
the technique over others are that it is valid for general T and that a systematic procedure 
for going to next order by considering fluctuations about the extrema1 path exists [2,13]. 

To illustrate the use of path integral techniques, we have assumed that the diffusion 
constants D and R in the model are small and of the same order, but this is not always 
the case for the dye laser. In [17] it was found that simulations of the dye laser 
reproduced experimental behaviour when R was much smaller than 0, so that in the 
dimensionless units used in this paper we would have, for example, R = O( and 
D = O( lo-’). This suggests that a good approximation would be to set R equal to zero, 
in which case the model reduces to that described by the Langevin equation with a 
single multiplicative coloured noise term which is discussed in 141. We are currently 
investigating these, and related, questions. 
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